
L I T E R A T U R E  C I T E D  

1. N.N.  Moiseev and F. L. Chernous'ko, "Problems of the oscillations of a liquid acted upon by surface 
tension forces ,"  Zh. Vyehisl. Mat. Mat. Fiz., No. 6 (1965). 

2. N.D.  Kopachevskii, ,Hydrodynamics in weak force fields. Small oscillations of an ideal liquid," Izv. 

Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1966). 
3. N.D.  Kopachevskii, ,Oscillations of immiscible liquids," Zh. Vychisl. Mat. Mat. Fiz., No. 5 (1973). 
4. G .N.  Mikishev and B. N. Rabinovich, Dynamics of a Rigid Body Containing Cavities Partially Filled 

with Liquid [in Russian], Mashinostroenie, Moscow (1968). 
5. V .S .  Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1967). 
6. V. Blyashke, Differential Geometry [in Russian], ONTI, Moscow-Leningrad (1935). 
7. A .D.  Tyuptsov, ,Hydrostatics in weak force fields. Stability of equilibrium forms of the surface of a 

liquid," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1966). 
8. S .G.  Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970). 
9. V .R .  Orel, "Stability of an incompressible fluid acted upon by surface tension forces.  Case of a doubly 

connected equilibrium surface," Zh. Prikl.  Mekh. Tekh. Fiz., No. 6 (1974). 
10. F . R .  Gantmaeher, The Theory of Matrices, Chelsea, New York (1959). 
l l .  E .W.  Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York (1955). 

D Y N A M I C S  OF A D I V E R G I N G  L I Q U I D  M E N I S C U S  IN 

A C A P I L L A R Y ,  T A K I N G  I N T O  A C C O U N T  T H E  S P E C I F I C  

PROPERTIES OF THIN FILMS 

B.  V. Z h e l e z n y i  UDC 532.68 

The theory of the diverging meniscus of a Newtonian liquid for capillary flow conditions at low 
meniscus velocities,in which the thermodynamic and rheological features of thin wetting films 
appear, is set forth. Two cases are considered: thermodynamically stable wetting film with 
high viscosity in the boundary layer  on a completely wetted solid surface and a thermodynam- 
ically unstable film on a conditionally wetted solid surface exhibiting a liquid slip effect. 

The relation between the thickness h* of the film left on the walls of the cylindrical capillary behind a 
diverging liquid meniscus and the rate v at which the meniscus t ravels  is determined when studying the prop- 
er t ies  of wetting films in the capillary method [1]. Extrapolation of h,  (v) to zero velocity makes it possible 
to find the thickness of equilibrium films with a meniscus in capillaries of various radii R andtothereby deter-  
mine the basic thermodynamic character is t ic  of equilibrium wetting films - the wedging pressure  isotherm. 
Moreover, h ,  (v) provides information about the rheological propert ies  of wetting films. A theory of the di- 
verging meniscus that would take into account the specific propert ies of thin films is necessary  in order  to 
interpret  this information and to correc t ly  extrapolate h,  iv) to zero velocity. 

The dynamics of the diverging meniscus of a wetting liquid has been previously considered under the 
assumption that the film deposited on a solid film surface exhibits the properties of a bulk liquid phase (the 
viscosity coefficient 770 and coefficient of surface tension a are given by tables) [2-4]. Various methods have 
yielded the equation 

~ d ~ h / d l  3 = 3~lov( l / h  ~ - -  h , / h 3 ) ,  (1) 

which describes steady flow in one direction in a flat film of a Newtonian liquid on a p lane(or  c i rcular  cy- 
lindrical) solid surface if flow occurs only due to capillary forces (capillary flow regime). In Eq. (1) h,  is the 
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Fig. 1 

finite th ickness  of  the wett ing su r face  deposi ted on the solid su r face  behind the men i scus ,  and h is the cu r ren t  
th ickness  of the f i lm for  the cu r ren t  coordinate  l ,  counted off along the solid su r face  in the di rect ion in which 
the meniscus  t r a v e l s ;  the coordinate  s y s t e m  is bound to the meniscus ,  i .e . ,  the cen te r  of the meniscus  is a s -  
sumed  fixed and the solid su r face  is a s s um ed  to t r a v e l  in the negative di rect ion of the 1 axis with veloci ty  
Iv!. 

Equation (1) e x p r e s s e s  the re la t ion  between a motive flow force  (capi l lary  p r e s s u r e  gradient)  and s teady 
flow through a given c r o s s  sect ion of a flat f i lm.  We will demons t ra t e  that  th is  is s o  by deriving an analogous 
equation to take into account the speci f ic  p r o p e r t i e s  of  thin f i lms .  Let  us cons ider  flow in the di rect ion x in 
a flat wett ing f i lm on a plane su r face  (Fig. 1). Suppose the f i lm has constant  th ickness  in the z di rect ion p e r -  
pendicu la r  to the plane of the f igure;  the f i lm , ,prof i le , .  i .e . ,  the curve h(x), is invar iant  ove r  t ime  and in space,  
while the solid su r face  moves  at a ve loc i ty  v. Such a s teady s ta te  is r ea l i zed  nea r  a liquid meniscus  moving 
at a constant  ve loci ty  in a cap i l l a ry  if the s y s t e m  is cons idered  in the coordinate  s y s t e m  given above. 

Suppose the motive flow force  is a bulk force  G (p re s su re  gradient)  and that no tangent ia l  s t r e s s  is p r e s -  
ent on the f r ee  su r face  of the f i lm.  I f  the decl ivi ty  condition 

d h / d l  << i (2) 

holds,  the flow veloc i ty  component  in the d i rec t ion of the y axis pe rpend icu la r  to the solid sur face  can be d i s -  
r e g a r d e d  and flow can be cons idered  as unidi rec t ional .  If  the liquid in the f i lm has constant  v i scos i ty  coef -  
f icient  and the wall  a t tachment  condition is valid,  solution of the N a v i e r - S t o k e s  equation for  this case leads 
to the equation 

q = G h V 3 ~ l o  - -  v h ,  

where  q is to ta l  flow p e r  unit length in the z di rect ion,  Gh3/3V0 is the flow component  due to the force  G, and 
- v h  is the flow component  due only to the choice of the moving coordinate  sy s t em.  If  G is de te rmined  sole ly  
by cap i l l a ry  fo rces ,  at the dis tance f r o m  the meniscus  at which the f i lm acqui res  a constant th ickness  h , ,  
G =0 and q = v h . ,  i .e . ,  the f i lm t r a v e l s  as a whole toge the r  with the wall  with a veloci ty  - v .  Since flow q is 
ident ical  in the s teady s ta te ,  we have for  an a r b i t r a r y  c r o s s  sect ion 

Gh~/3~lo : v ( h  - -  h , ) .  (3) 

In the case  of  a flat  f i lm,  the usual  cap i l l a ry  fo rces  sa t i s fy  the equation [2] 

G • - -  d p / d l  , ~  o d 3 h / d l  '~, (4) 

where  p is cap i l l a ry  p r e s s u r e ,  negat ive for  a concave (to the gas  phase) men i scus .  Substituting Eq. (4) in Eq. 
(3), we a r r i ve  at Eq. (1). 

In o r d e r  to extend the theory  to the case  of  thin f i lms  it is n e c e s s a r y  to take into account how the t h e r m o -  
dynamic and theo log ica l  p r o p e r t i e s  of  such f i lms may  va ry .  The t he rmodynamic  fea tu res  of  thin f i lms  man i -  
fes t  t h e m s e l v e s  in the appearance  of a wedging p r e s s u r e  P in addition to the usual  cap i l l a ry  p r e s s u r e .  The 
way in which this p r e s s u r e  can be taken into account in the equations of  motion of thin f i lms has been set  for th 
in [5]. This  method has now become widespread  [6, 7] and will be adopted here  without any changes.  Accord-  
ing to [5], the effect  of  the wedging p r e s s u r e  on flow in a flat  f i lm is fo rmal ly  identified with the effect  of an 
ex te rna l  p r e s s u r e  equal  to it in magnitude but opposi te ly  d i rec ted,  i .e . ,  with the effect  of  an additional force  
of the s ame  nature  as the usual  cap i l l a ry  p r e s s u r e .  Here  it is a s sumed  that  the local  value of the wedging 
p r e s s u r e  in a given c r o s s  sect ion of a flat f i lm is a function sole ly  of  th ickness  [P=P(h)] ,  as in the case  of a 
flat f i lm,  but is independent of  the shape of the su r face  bounding the f i lm in neighborhoods of the c r o s s  s e c -  
t ion. Thus,  Eq. (4) may  be r ep laced  by the equation 

C = - -  d ( p  - -  P ) / d l .  (5) 

The equation for  G can also include such bulk fo rces  as grav i ty ,  though whenever  the  speci f ic  p r o p e r t i e s  of  
thin f i lms  mani fes t  t h e m s e l v e s ,  these  fo rces  are  usual ly  inessent ia l ,  and so will be d i s rega rded .  

356 



In o r d e r  to use  Eq. (5) in in te rpre t ing  Eq. (3) it is n e c e s s a r y  to have the re la t ion  P(h), cal led the wedg- 
ing p r e s s u r e  i so the rm.  In many cases  it is e x p r e s s e d  by a power  law of the fo rm 

P = --  A/6 ah% (6) 

where  A is a constant  and n =const  > 1. When n =3, Eq. (6) e x p r e s s e s  the well-known G a m a k e r  law for  non- 
r e t a rd ing  d i spe r se  interact ion,  and in this  ease  A is cal led t h e  G a m a k e r  constant  (the n u m e r i c a l  fac tor  6:r occurs  
p r e c i s e l y  in the G a m a k e r  equation, and is re ta ined  here  for  genera l i ty  in the ease  of a r b i t r a r y  n). We will 
use Eq. (6) as P(h) for  n =3 and 2. These  two values  of n co r r e spond  to expe r imen ta l ly  d i scovered  i so the rms  
P(h) for  wetting f i lms of low-po la r  and h igh-po la r  Iiquids [1]. 

The sign of A is de te rmined  by the nature  of the ene rgy  in terac t ion  between the liquid and the solid s u r -  
face.  Negative A co r r e sponds  to s t rong in teract ion and is r ea l i zed  in the ease  of a lyophilic (eompleteIy wet-  
ted) solid sur face  and co r r e sponds  to t he rmodynamica l ly  s table  po lymoleeu la r  liquid f i lms .  Posi t ive A c o r -  
responds  to weak in terac t ion  and is r ea l i zed  for  a lyophobic (conditionally wetted) solid sur face  cha r ac t e r i z ed  
by a s t rongly  nonzero balanced wetting angle. Po lymolecu la r  liquid f i lms are t he rmodynamica l ly  unstable on 
such a su r face .  

The rheologica l  p r o p e r t i e s  of thin f i lms are  taken into account using two theologica l  models  c o r r e s p o n d -  
ing to the different  types  of the ene rgy  in teract ion between the liquid and the solid su r face .  In the ease  of 
t he rmodynamica l l y  s table  f i lms  (lyophilie soIid surface)  an a t tachment  model  will be used  in which it is a s -  
sumed that t he re  is no liquid sl ip along the su r face  and that the local  v i scos i ty  coefficient  in the boundary 
I aye r  is not a s ing le -va lued  function of the dis tance to the solid su r face .  

A sl ip model ,  in which it is a s sumed  that the liquid s l ips  as it moves  along the solid sur face ,  and where 
the ra te  of  slip is p ropor t iona l  to the tangent ia l  s t r e s s  on the solid s u r f a c e ,  while the v i scos i ty  coefficient  of 
the Iiquid within the f i lm (coefficient of v iscous  friction) is constant  and equal to ~/0, will be used  for  the ease 
of t he rmodynamica l l y  unstable  f i lms  (lyophobie sur face) .  In both models  propor t iona l i ty  between the motive 
force  and the flow under  s t e a d y - s t a t e  conditions is re ta ined;  in pa r t i cu l a r ,  Eq. (3) can be used  by replac ing  
~/0 by the effect ive v i scos i ty  coefficient  ~/e of the f i lm, which is a function of the th ickness  h of the la t t e r .  We 
may a s sume  that  for  suff icient ly la rge  h, ~?e(h) in the a t tachment  model  is descr ibed  by the equation 

11~=110(t + ldh),  (7) 

and that 

ne=no(i + k/h)-', (8) 

where  k=cons t ->0,  is valid for  all h in the slip model;  the coeff icients  k in Eqs.  (7) and (8) a re  de te rmined  by 
the actual  phys ica l  p r o p e r t i e s  of  the s y s t em .  

Prev ious ly  obtained [8] expe r imen ta l  r e su l t s  can be used as a basis  for  se lect ing the rheological  a t tach-  
ment model ,  while r e su l t s  given in [9] can be used for  se lec t ing  the sl ip model .  A more  detai led presenta t ion  
of the effect ive v i scos i ty  coefficient  of a thin f i lm (layer) will be given in a future r epo r t .  

It should be noted that  no equ i l ib r ium po lymolecu la r  ("liquid") f i lm with a meniscus  can exis t  on a lyo-  
phobic su r face  [10]. Only if a diverging meniscus  moves  fast  enough behind it can a f i lm that  is un i fo rm in 
th ickness  be deposi ted ove r  a r e s t r i c t e d  sect ion of the su r face .  This f i lm will be t he rmodynamica l ly  unstable 
and before  long decomposes  into s epa ra t e  drops of liquid. However,  if such a f i lm that  is un i fo rm in th ickness  
ex i s t s  for  at leas t  a b r i e f  t ime  at some distance f r o m  the meniscus ,  the p roce s s  by which this f i lm decomposes  
can be d i s r ega rded  in studying the meniscus  dynamics ,  s ince in this  case  it will not affect the shape of the 
men i scus  nor  the value of h ,  (after the f i lm decomposes  h ,  will c h a r a c t e r i z e  the to ta l  m a s s  of the liquid that 
has been deposi ted in the fo rm of s epa ra t e  drops  on the lyophobic sur face) .  The slip model  co r responds  to flow 
conditions p r e c i s e l y  in such a " s h o r t - l i v e d ,  wetting f i lm.  

If  we assume  that Eqs.  (6)-(8) are  val id o v e r  the ent i re  range of f i lm th icknesses  (h>-h,) being studied, 
we find f r o m  Eqs.  (3) and (5)-(7) for  the case  of a lyophilie solid su r face  that 

c~d3h/dl 3 4- n A / 6 n h  ''+1 �9 dh /d i=(3~lov /h  a) (1 4- k/h)  ( h -  h . ) ,  (9) 

where  A <0. In the case  of  a lyophobic solid su r face  Eqs.  (3), (5), (6), and (8) imply that 

csd3h/dl a 4- n A / 6 ~ h  ,~+x. dh/d l=(3~lov/h  ~) (h - -  h.),'(t -- k/h) ,  (10) 

where  A >0.  
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TABLE 1 

1 0 0,t 

0 0,6430 0,6740 
0A 0,6643 0,6956 
0,3 0.7060 0,7378 
i 0,8439 0,8767 
3 t,1897 1,2237 

t0 2,1399 2,t748 
30 4,t222 4,t575 

0,3 1 t 10 30 

0,7392 0,9945 t,8524 5,2073 t5,12|3 
0,76ti t,0t65 1,8713 5,2195 15, i286 
0.8039 1,0594 t,9084 5.2437 15,t430 
0,9443 1,1998 2.0329 5,3273 t5,1936 
1,2930 i,5479 2,3542 5,5587 15.3369 
2.2453 2,4985 3,2695 6,2984 t5.8267 
4,2284 4,4799 5.2247 8,0645 17,t4t8 

TABLE 2 

0 0,6430 0,6604 0,697i 
0.1 0,6643 0,68t8 0,7189 
0,3 0.7060 0,7239 0,7615 
1 0.8439 0,8625 0,90t3 
3 1,1897 1,2092 1.2493 

t0 2.1399 2.1601 2,2011 
30 4,1222 4,t427 4, f840 

i0 

0,8453 1,3738 
0,8675 t.3931 
0,9101 1,4311 
1,0502 1.5580 
t.3982 t.8842 
2,3491 2,8073 
4,3308 4,7694 

3,556t 
3,5688 
3,594t 
3,68t5 
3.9923 
4.6860 
6,4871 

30 

t0,t307 
10.t384 
t0,t536 
10.2068 
10,3574 
10,8707 
t2,2395 

TABLE 3 

0,i 0,3 i 3 t0 30 

0 0,6430 0.6265 0,5955 0,5097 0,384t 0,2499 0,1578 
o,i 0,6227 0,6064 0,5760 0,4933 0,374t 0.2455 0,1560 
0,3 0,5874 0.5715 0,5423 0,4648 0,3562 0,2375 0,t527 
1 0,4999 0,4851 0,4588 0,3944 0,3098 0,2147 0,1420 
3 0,3733 0,3602 0,3385 0,2929 0,2375 0,t737 0,i2t9 

10 0,2286 0,2176 0,2026 0,1769 0,i48t 0,tt51 0.08666 
30 0,t298 0 , t2 t0  0 , t t 1 7  0,09223 0,08374 0,06777 0,05387 

The film model descr ibed by Eq. (9) is said to be a "stable" film, while the model descr ibed by Eq. (10) 
is called an "unstable" film. Note that the t e r m s  "stable" and "unstable" used to denote these models differ 
f rom the analogous thermodynamic  concepts.  F r o m  the standpoint of equil ibrium thermodynamics ,  film s ta -  
bility is determined only by the sign of the derivative 0P/0h;  a plane film is stable if 0P/~h< 0; and is un-  
stable if 0 P / a  h > 0 [11]. The models  used he re  descr ibe  not the equilibrium state, but the flow process  of a 
thin film and presuppose,  f i rs t ,  the actual form of the i sotherm P(h) and, second, a par t icu lar  type of rheologi-  
cal proper t ies  of the f i lm. 

Equations (9) and (10) are  analogs to Eq. (1) for the case of stable and unstable thin wetting films, r e -  
spectively.  A film that exhibits the usual proper t ies  of thebulk  liquid phase, i.e., such that A =0 and k=0, 
is called ideal. Equations (9) and (10) degenerate into Eq. (]) in the case of an ideal film. 

The final purpose of the theory  is to determine h .  (v, B). For  this purpose we must integrate Eqs. (9) 
and (10) in o rde r  to find the profile of a diverging meniscus  in the slippage region and to relate this part of 
the profile with the profile of the centra l  part  of the meniscus in which condition (2) breaks down and Eqs. (9) 
and (10) become inapplicable. 

The way in which Eqs. (9) and (10) are integrated is analogous to the way in which Eq. (1) is integrated 
[2]. Introduction of the dimensionless  var iables  y = h / h . ,  x = ( 3 v ~ o / c r ) l / 3 1 / h .  and pa ramete r s  

n A  (11) 

~J = k / h . ,  (12) 

where N=(3v~0/a) 2/3, makes it possible to represent  Eqs.  (9) and (10) in dimensionless  form: 

d~y/dx  3 = (z /y  ,~+x �9 d y / d x  + (1 + ~J/y) ( l / y  ~" - -  i /y~);  (13) 
y ' "  = a y ' / y n +  1 + [t/(y + [~)] ( t / y  - -  t / y2) .  (14) 

The initial conditions of integration for Eqs.  (13) and (14) cor respond  to a smooth t ransi t ion f rom the flat part  
of a meniscus  to a film of constant thickness ,  
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g - ~ i ,  y ' - ~ 0 ,  g " - ~ 0  as x - + - - o o .  

Equations (13) and (14) were  numer i ca l l y  in tegra ted  under  the conditions (15) using the M-222 and 
B]~SM-4 c o m p u t e r s .  Analytic solutions of the l inear  equations 

(15) 

z ' " =  ~zz' + (l + [~)z; 
z ' ' 'A ~zz' + z/(l + ~), 

(16) 
(17) 

into which Eqs.  (13) and (14) are  t r a n s f o r m e d  as y - ~ l  under  the subst i tut ion z = y - 1 ,  are used  as the initial 
segments  of  the in tegra l  curves  y(x). The p a r t i c u l a r  solution of Eqs.  (16) and (17) under  the conditions (15) 
has the f o r m  

z = C exp (sx), 

where  e is the r ea l  root of  the co r respond ing  c h a r a c t e r i s t i c  equation and C is the constant of integrat ion,  
which is de te rmined  by the choice of  the or igin  of the x axis .  Since the or igin can be a r b i t r a r i l y  chosen in 
this  p rob lem,  C may be ass igned any nonzero value that  does not affect the final resu l t .  

It is c l e a r  f r o m  the f o r m  of the Eqs .  (13) and (14)that  y " ~ 0  as y ~  ~when n >1. The re fo re ,  the in tegra l  
curve  for  any pa r t i cu l a r  solution of these  equations (corresponding to the ac tua lva lues  of a and fl) approaches  
without l imit  some l imit ing pa rabo la  desc r ibed  by the equation y "  =C(a ,  fl) =const  as y ~  ~. This  l imit ing 
value of the second der iva t ive  is used  to combine the prof i les  of the flat and cen t ra l  pa r t s  of the men i scus .  
A method for  "combining" both pa r t s  of  the profi le  was given a genera l  formulat ion in [12]. In the cases  
being cons idered  here  h .  << R and the radius  of curva tu re  of  the cen t ra l  par t  of the meniscus  in the xy plane 
is nea r ly  equal to the radius  of the cy l indr ica l  cap i l l a ry  R o r  to half  the width of the plane capi l la ry .  In this  
case  we have [12] 

h,=C(~,  ~)RN, (lS) 

where the coefficient  C(o~, fl) is a function of the p a r a m e t e r s  o~ andfi .  If  C(a ,  fl) is known, the s y s t e m  of equa-  
t ions (11), (12}, and (18) provide p a r a m e t r i c  dependence of h .  on v and R. 

In Table 1 can be found values  of  C(~, fi) obtained as a resu l t  of numer i ca l  integrat ion of Eq. (13) for  
different  va lues  of  o~ and fr in the case  n =2, while Table 2 is cons t ruc ted  for  n=3 ,  and Table 3 provides  an-  
alogous resu l t s  of  integrat ing Eq. (14) for  n = 3. When c~ = 0 and f~ = 0, C (a,/3)--C0 = 0.643 and Eq. (18) desc r ibes  
the well-known re la t ion  h . ( v ,  R) fo r  an ideal f i lm [2, 3] 

h,  =0.643RN. (19) 

The case  o~ =0, fl~0 co r r e sponds  to a f i lm with v i scos i ty  different f rom that  of  an ideal f i lm, but iden-  
t i ca l  to it in t e r m s  of t h e r m o d y n a m i c  p r o p e r t i e s  (P = 0). In this case  C (a, fi) -= C (fl) (second column of Tables  
1-3) mad h ,  (v, R) is given by the equation 

I / ~ - c ( ~ )  (R'k)N, (20) 
which follows f r o m  Eqs.  (12) and (18). 

The re la t ion  h ,  (N, R) for  this case  can be found in Fig. 2, in which curve 1 co r r e sponds  to an ideal f i lm,  
curve  2 to the a t tachment  model  of Eq. (7), and curve  3 to the sl ip model  of Eq. (8). Note that all th ree  curves  
pass  through the or ig in .  

As fi-~0 ( h , ~  oo) C(f~) is e x p r e s s e d  by the equation 

C([~)=Co ,-+ (Co,:3)~, (21) 

where  the sign of the last  t e r m  is de te rmined  by the se lec ted  rheologiea l  model .  Equations (20) and (21) imply 
that  h .  (N, R) in this  case  ( P - 0 )  approaches  asymptote  pa ra l l e l  to the line cor responding  to a l inear  depen-  
dence ( h , / k = l . 9 3 R N / k ) f o r  an ideal f i lm and k/3 units f r o m  it along the y axis as N ~  ~ (Fig. 2, curves  4 and 
5). Note that  these  a sympto tes  co r r e spond  to values  of h .  (N, R) for  an ideal f i lm if the or igin of the h axis 
(cf. Fig. 1) is shif ted :~k/3 units f rom the solid su r face .  That  is,  for  large enough h (i.e., sma l l  deviations of 
Ve f r o m  V0), va r ia t ion  of the f i lm v i scos i ty  can be fo rmal ly  r e p r e s e n t e d  as the resu l t  of a dec rease  (in the a t -  
t achment  model) o r  an inc rease  (in the sl ip model) of the effect ive th ickness  of the f i lm by 1</3 units if the 
f i lm has no rms ]  v i scos i ty  (770). A s i m i l a r  r e su l t  can be obtained f rom the theory  for  the re la t ion  re(h) .  

By Eq. (11), if A~0 ,  [ o~f~ ~oas N ~ 0 .  If follows f r o m  Tables  1 and 2 that C(a ,  fi)~o~/n as  a ~  ~ in the  
case  of s table f i lms ,  which toge the r  with Eqs.  (11) and (18) yields  the equation 

h. ~ ho=IAR/6~(~]l/n as v ~  0. (22) 
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The quantity h 0 obtained f r o m  the hydrodynamic  equation as the l imit ing th ickness  of a s table  f i lm as v - -  0 
is equal  to the th ickness  of  a t h e r m o d y n a m i c a l l y  equ i l ib r ium f i lm with a men i scus .  It can also be obtained 
in a pure ly  t he rmodynam i ca l l y  fashion, which d e m o n s t r a t e s  that  our  approach  is theore t i ca l ly  co r r ec t .  

The s y s t e m  of equat ions (11), (12), and (18) can be t r a n s f o r m e d  by means  of h 0 to a more  suitable fo rm 
for  p r ac t i ca l  use .  We introduce the va r i ab le  N o =h0/CoR , where  co is a constant  and let H=h , /h0 ;  and W = 
N/N0; y = k / h  0. The coeff icient  0.643 occu r r ing  in Eq. (19) should be chosen as C 0. Equations (11), (12), and 
(18) now imply  that  

H =  [nC((z, ~J)/a ]l/n; (23) 
W = [Co'C(a, p) ] H=-[i).G43'C(c;, •)]H; (24) 

) ,=  ~ H =  p[nC(a, ~)/a]l/n. (25) 

The s y s t e m  of equations (23)-(25) is equivalent  to the s y s t e m  (11), (12), and (18). The var iab le  y is a s sumed  
given.  The values  of  the coeff icients  C(o~, fi) occu r r ing  in Eqs.  (23) and (24) a re  found by solving Eq. (25) for  
given y and ot us ing a sui table coeff icient  tab le .  

The s y s t e m  (23)-(25) makes  it poss ib le  to cons t ruc t  un ive r sa l  dependences H(W, y) .  In pa r t i cu la r ,  when 
Y = 0 (the theo log ica l  p r o p e r t i e s  of  a thin f i lm are  identical  to the p r o p e r t i e s  of an ideal f i lm) i so the rms  of the 
type of Eq. (6) have a unique H(W) for  given n that  is invar iant  re la t ive  to the radius  of the cap i l l a ry  and the 
constants  ~,  7, A. 

Figure  3 depicts  the fami ly  of cu rves  H(W, y) for  s table  f i lms  when n = 3  and Y =0, 1, 3, and 10 (curves 
2-5,  r e spec t ive ly ) .  As W-~0, all the cu rves  o ther  than curve  1, which co r r e sponds  to an ideal f i lm, converge  
at the point (H=I)  cor responding  to an equ i l ib r ium fi lm.  Note that  this  occurs  independently of  the degree  to 
which the rheologica l  p r o p e r t i e s  of the f i lm va ry .  When T=0,  the curve H(W) asympto t ica l ly  approaches  the 
line H=W as W--* ~; th is  line co r r e sponds  to an ideal f i lm. When H=W, the cu rves  y 4  0, the curve  H(W) 
approaches  asympto tes  pa ra l l e l  to this  line and y / 3  units along the y axis f r o m  it as W ~  ~o, i .e. ,  the curves  
approach  the s ame  asympto tes  as in the case  cons ide red  above of a f i lm that  is t he rmodynamica l ly  identical  
to an ideal  f i lm (the a sympto t e s  of  the cu rves  3-5 are  r e p r e s e n t e d  by the broken lines 6-8, respec t ive ly) .  

Thus,  h .  becomes  a function of the i s o t h e r m s  P(h) for  suff icient ly th ick f i lms (correspondingly,  suf-  
f iciently fast  menisc i ) ,  but the effect  of  a va r ia t ion  in the v i scos i ty  in the boundary l aye r  r ema ins  the same 
for  all t h i cknesses .  However ,  s ince h . / h i - - * l  as v ~  co (h i is the th ickness  of an ideal f i lm for  given veloci t ies  
and cap i l l a ry  radi i) ,  ne i the r  can a va r ia t ion  in v i s cos i t y  p rac t i ca l l y  be d i scovered  at g rea t  f i lm th i cknesses .  
For  thin f i lms  (slow menisc i ) ,  on the o the r  hand, the t he rmodynamic  fea tu res  of  thin f i lms exe r t  a more  sub-  
s tant ia l  effect  t h a n  do the rheologica l  f ea tu res ,  which leads to a qual i ta t ively  new resul t .  Stable f i lms will 
have an equ i l ib r ium th ickness ,  while unstable f i lms  wi l l  have a c r i t i ca l  wetting veloci ty.  

As o~-~ ~ (W--*0, H-* I ) ,  C(ot, fi) for  s table  f i lms  can be e x p r e s s e d  by the equation 

c(~z, p)=~/n + ( G  + GP)I V~,, 

where Cl and C 2 are  constants  that  weakly depend on n. We apply this  re la t ion  to Eqs.  (23)-(25), obtaining for  
H(W) n e a r  W =0 the equation 

H = I  + (C -+- C,u (26) 

where  C and C .  a re  constants  that  de te rmine  the s ize of  n and V =W 3/z = v / v  i (vi is the meniscus  veloci ty  at 
which the value of  h .  fo r  an ideal  f i lm is equal  to h0). When n=3 ,  C =0.271 and C .  =0.157, while when n = 2 ,  
C =0.465 and C .  =0.274. 
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By Eq. (26), h ,  (v) is l inear  at low ve loc i t ies ,  which is of s ignif icance if we are to ex t rapo la te  e x p e r i -  
menta l  h ,  (v) to zero  veloci ty  in o r d e r  to find h 0. Moreover ,  the angle of inclination of the line H(V) at low 
veloci t ies  can be used to find y ,  i .e . ,  de te rmine  the degree  of var ia t ion  of the rheologica l  p r o p e r t i e s  of a 
f i lm.  

Curves  H(W) for  unstable  f i lms cons t ruc ted  by means  of Table 3 a re  p resen ted  in Fig. 4, where curves  
1-8 r e p r e s e n t  the same  si tuat ions as in Fig. 3. In this  case  h 0 is only of ma themat i ca l  impor tance ,  s ince 
the re  is no equi l ibr ium wetting f i lm with a meniscus .  However ,  the value of h 0 that  can be de te rmined  f rom 
Eq. (22) makes  it poss ib le  to also use the s y s t e m  (23)-(25) to cons t ruc t  un ive r sa l  curves  for  H(W). These  
cu rves ,  as in the case  of  s table f i lms ,  approach asympto tes  pa ra l l e l  to the line H =W and y /3  units along the 
y axis f r o m  it as W ~  ~o. Eve ry  curve  in te r sec t s  the x axis for  some c r i t i ca l  W =W 0 depending on T. In gen-  
e ra l ,  no wetting f i lm is deposi ted on a lyophilic sur face  if the meniscus  t r a v e l s  s lowly.  

Nea r  W0, i .e. ,  as ~ -  ~ and f i~ ~, the solution of Eq. (14) becomes  unstable ,  so that w 0 cannot be de t e r -  
mined ve ry  accura te ly .  Clear ly ,  there  ex i s t s  a s ing le -va lued  W0(y). This  dependence can be es tab l i shed  by 
analyzing the function C (oz, fi) as fi and I a I t end to  infinity inthe light of the following cons idera t ions .  As W~W0,  
i .e . ,  as h . ~ 0 ,  C(Oz, 13) will be such that ,  according to Eq. (18), a f te r  o~ and/3 have been rep laced  by the c o r -  
responding exp re s s ions  f r o m  Eqs.  (11) and (12), the resu l t  can be e x p r e s s e d  by the equation 

C(a, p)=h./(r (27) 

where co=A/aW0; and f(~o, k) is a function of the va r i ab l e s  ~o and k and is independent of h.. Moreover ,  the c o r -  
responding values  of ~ and fl n e a r  W 0 for  each  point of the curve H(W) (for the given V) are  connected by the 
equation 

a/~n-I =0.643n/?n-~ W0, (28) 

which follows f r o m  Eqs.  (11) and (12). 

Equations (27) and (28) make it poss ib le  to e s t ab l i sh  W0(~/) for  unstable f i lms .  It is c l ea r  f rom Table 3 
that  at high ~/, C(oz, /3) apparent ly  obeys  the re la t ion  

C(cz, p) ,~ C / ~ t ,  (29) 

where  C, s, a n d t  are  constants ,  as Iozl and fi tend to infinity. By Eqs.  (27) and (28), the exponents ofc~ and 
fl in Eq. (29) will be connected by the re la t ion  s ( n - 1 ) + t  =1. Based on the values  of the coeff icients  in the lower 
r ight  c o r n e r  of Table 3, we may set  s =0.2, t =0.6, and C =0.8. Using these  values ,  for  la rge  y ,  Eqs. (18) and 
(29) resu l t  in 

Wo ~ 0.93 V~-. 

When %, =0 (no slip), C(oz, fl) - C ( ~ )  for  an unstable f i lm is e x p r e s s e d  by the row of Table 3 c o r r e s p o n d -  
ing to fl=0. By Eq. (27), as ~ - ~  this re la t ion  will be e x p r e s s e d  by the equation C(~) =C/V"~, where C is a 
constant .  By analyzing Table 3, we can e s t ab l i sh  the more  exact  equation 

C(~)=0.98/(V~- § 0.72). (30) 

Nea r  W0, Eqs.  (18) and (30) imply that  when ~ =0, H(W) is given by 

H = 2 A 7 ( V -  V0), (31) 

where  V 0 =W~0/2 = 0.912. 
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By Eq. (31), H(W) is weakly convex to the W axis n ea r  W0, whereas  at higher  W, the curve for  It(W) is 
weakly concave to this  axis, as can be seen in Fig. 4. Thus,  there  is an inflection point nea r  W0, and It(W) in 
this region is genera l ly  l inear .  There  are grounds for  supposing that H ~  r) is of the same nature also for  
nonzero 7 .  This makes it possible to l inear ly  ext rapola te  H(W) until the point at which it in te rsec t s  the x axis 
in the region of low film th icknesses ;  in this region it is difficult to determine the exact form of H(W) in view 
of the instabili ty of the solution of Eq. (14) mentioned above. Segments of the curves  for  H(W) const ructed  in 
this way are  depicted in Fig. 4 by d a s h e d - d o t  l ines.  

The instabili ty of the solution of Eq. (14) as lot I ~ ~o and f l ~  ~o re f lec t s  the fact that the p rocess  by which 
fi lm deposited on a lyophobic surface  decomposes  s t a r t s  even near  the diverging meniscus as the c r i t i ca l  
wetting veloci ty  V0(~/) is approached (i.e., as H ~ 0 ) .  An investigation of this  phenomenon is beyond the scope 
of the present  r epor t .  

The author wishes to exp re s s  his appreciat ion to A. G. Grivtsov and V. S. Yushchenko for  valuable as-  
s is tance in the computer  calculat ions.  
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